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Abstract The power of QTL mapping by a mixed-model
approach has been studied for hybrid crops but remains
unknown in self-pollinated crops. Our objective was to
evaluate the usefulness of mixed-model QTL mapping in
the context of a breeding program for a self-pollinated
crop. Specifically, we simulated a soybean (Glycine max
L. Merr.) breeding program and applied a mixed-model
approach that comprised three steps: variance compo-
nent estimation, single-marker analyses, and multiple-
marker analysis. Average power to detect QTL ranged
from <1 to 47% depending on the significance level
(0.01 or 0.0001), number of QTL (20 or 80), heritability
of the trait (0.40 or 0.70), population size (600 or 1,200
inbreds), and number of markers (300 or 600). The
corresponding false discovery rate ranged from 2 to
43%. Larger populations, higher heritability, and fewer
QTL controlling the trait led to a substantial increase in
power and to a reduction in the false discovery rate and
bias. A stringent significance level reduced both the
power and false discovery rate. There was greater power
to detect major QTL than minor QTL. Power was
higher and the false discovery rate was lower in hybrid
crops than in self-pollinated crops. We conclude that
mixed-model QTL mapping is useful for gene discovery
in plant breeding programs of self-pollinated crops.

Introduction

Current QTL mapping studies have relied on designed
populations such as F2 or backcross populations devel-
oped from crossing two inbreds. The resulting progenies,
which have a simple pedigree, are then evaluated at
several environments for one or more quantitative traits
(Beavis 1994, 1998; Kearsey and Farquhar 1998). Al-
though this approach yields balanced data and allows a
relatively simple statistical analysis, it has important
limitations. First, most QTL studies have used small
population sizes (100–250 progenies) that limit the
power to detect and correctly estimate the location and
magnitude of QTL effects (van Ooijen 1992; Beavis
1994, 1998). Second, progenies are usually evaluated in
only two to ten environments, thus sampling a limited
set of QTL x environment interactions and preventing
results from being applicable to a wider range of envi-
ronments. Small population sizes and limited phenotypic
evaluation together constitute insufficient sampling,
which can cause lack of repeatability of QTL mapping
results (Beavis 1994). Third, designed populations rep-
resent a rather narrow germplasm base, and mapping
results may not apply to other genetic backgrounds
(Parisseaux and Bernardo 2004).

In silico mapping is an alternative approach that
circumvents the need for designed populations by
exploiting existing phenotypic and genomic databases
(Grupe et al. 2001). In silico mapping of quantitative
traits can be applied in plant breeding programs to
potentially overcome some of the limitations of current
QTL mapping experiments (Parisseaux and Bernardo
2004). Every year plant breeding programs generate vast
numbers of progenies that are evaluated at multiple
environments. The progenies represent a more diverse
sample of genetic backgrounds than designed mapping
populations, and inferences would apply to a wider
germplasm base. In advanced plant breeding programs,
elite inbreds are routinely genotyped with a random set
of markers for the purposes of germplasm organization

Communicated by H. Becker

M. Arbelbide Æ R. Bernardo (&)
Department of Agronomy and Plant Genetics,
University of Minnesota, 411 Borlaug Hall 1991
Upper Buford Circle, St. Paul, MN 55108, USA
E-mail: bernardo@umn.edu
Tel.: +1-612-6256282
Fax: +1-612-6251268

J. Yu
Institute for Genomic Diversity, Cornell University,
157 Biotechnology Building, Ithaca, NY 14853, USA

Theor Appl Genet (2006) 112: 876–884
DOI 10.1007/s00122-005-0189-7



and variety protection (Smith et al. 1995; Smith and
Beavis 1996). Such marker data can also be used in gene
discovery. A disadvantage, however, is that plant
breeding data are highly unbalanced, as inbreds or hy-
brids are evaluated in different sets of environments. A
second disadvantage is that the inbreds, which are
developed at different stages of a plant breeding pro-
gram, do not represent a single population but rather a
mixture of breeding populations composed of related
individuals. The inbreds cannot be assumed to be ran-
dom members of a homogeneous population. In this
context current QTL mapping methods are not appli-
cable, and in silico mapping in plant breeding would
require accounting for unbalanced data and for pedigree
relationships among inbreds.

These limitations can be overcome by a mixed-model
approach to QTL mapping. The mixed-model approach,
developed initially for animal breeding, has proved
useful for predicting breeding values while managing
unbalanced phenotypic data and accounting for pedi-
gree relationships among individuals (Henderson 1984).
The mixed-model approach can readily be extended to
include genomic data to map QTL (Kennedy et al. 1992;
Parisseaux and Bernardo 2004). In two previous studies
(Parisseaux and Bernardo 2004; Yu et al. 2005) we called
this approach in silico QTL mapping. The term ‘‘in silico
mapping’’ has also been used in more general bioinfor-
matics applications, e.g., in silico mapping of ESTs. To
avoid confusion with other in silico procedures, we now
refer to this approach as mixed-model QTL mapping.

Our previous studies of mixed-model QTL mapping
(Parisseaux and Bernardo 2004; Yu et al. 2005) were for
hybrid crops. Genotypic effects of hybrids comprise
three components: the additive effect (or general com-
bining ability effect) of the first inbred parent, the
additive effect of the second inbred parent, and the
dominance effect (or specific combining ability effect)
between the two inbred parents. Mixed models in cross-
pollinated crops need to account for these three genetic
effects. In contrast, self-pollinated crops comprise only
inbreds. This simplifies the mixed model to only one
genetic effect (i.e., additive).

No studies have been conducted on the power and
limitations of this methodology for self-pollinated crops.
Our objective was to evaluate the usefulness of mixed-
model QTL mapping in the context of a breeding pro-
gram for a self-pollinated crop. We considered soybean
(Glycine max L. Merr.) as a model species but our results
should be generally applicable to other self-pollinated
crops

Materials and methods

We conducted a simulation study to mimic the two main
stages in a soybean breeding program: inbred develop-
ment and performance testing. During inbred develop-
ment, crosses among selected parents were made,
recombinant inbreds were developed, and the best

recombinant inbreds were selected based on phenotypic
data. During performance testing, inbreds developed
from different crosses were tested more extensively in
performance trials. Only data from performance trials
were used in QTL mapping.

The breeding process was simulated for different levels
of population size (N=600 and 1,200), number of QTL
(l=20 or 80), heritability (H=0.40 or 0.70), number of
markers (m=300 or 600), generations of random mating
(t=10 or 20) and levels of significance (a=0.01 or
0.0001). The two levels of each of these six factors re-
sulted in 26=64 simulation experiments. Forty-eight of
these simulation experiments were repeated 50 times.
Due to computer-time limitations, the remaining 16
experiments (which were the larger experiments) were
repeated between 30 to 49 times. Simulations with large
population sizes and large number of markers took
about 4–5 months to complete. In each repeat, QTL and
marker locations were different, leading to different
breeding populations and inbreds. Each repeat was
analyzed separately and the results were summarized for
each of the 64 experiments. Simulations and mixed-
model analysis were performed with a C++ computer
program written by M. Arbelbide. Simulations were
conducted on an IBM Power4 supercomputer cluster at
the University of Minnesota Supercomputing Institute
for Digital Simulation and Advanced Computation.

Inbred development

The following groups of inbreds were simulated: ances-
tral inbreds, founder inbreds, first-cycle inbreds, second-
cycle inbreds, and third-cycle inbreds. Four ancestral
inbreds, each with different QTL and marker allele
genotypes, were random mated for t=10 or 20 genera-
tions to generate 20 founder inbreds. Current soybean
cultivars, which have a narrow genetic base (Delannay
et al. 1983; Gizlice et al. 1994), have complex pedigrees
and are different numbers of generations removed from
the founder cultivars. Thus, actual patterns of linkage
disequilibrium among soybean cultivars vary widely
across populations (Zhu et al. 2003), and for simplicity
and convenience we used different numbers of genera-
tions of random mating to generate high (t=10) and low
(t=20) levels of initial linkage disequilibrium. The
development of first, second, and third-cycle inbreds as
described below led to further variation in linkage dis-
equilibrium. Linkage disequilibrium was calculated for
multi-allelic loci as described by Farnir et al. (2000).

The 20 founder inbreds comprised random re-
combinant inbreds derived from the random mated
ancestral population. First-cycle inbreds were developed
from random crosses among the 20 founder inbreds.
Similarly, second-cycle inbreds were developed from
random crosses among the first-cycle inbreds, and third-
cycle inbreds were developed from random crosses
among the second-cycle inbreds. The first, second, and
third-cycle inbreds were developed by single seed descent
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from the F2 population between two parents. A total of
100 recombinant inbreds were developed per cross. The
best 1% of recombinant inbreds were selected after
phenotypic evaluation, and these selected inbreds were
designated as the first, second, or third-cycle inbreds.
Equal numbers (200 or 400) of first, second and third-
cycle inbreds were developed for a total of N=600 or
1,200 inbreds. Heritability on an entry-mean basis was
H=0.4 or 0.7 during inbred development. Genotypes,
genotypic values, and phenotypic values of inbreds were
obtained as described in later sections.

Genotypes and genotypic values of inbreds

Each QTL had four alleles (each from a different
ancestral inbred), Qi

1, Qi
2, Qi

3, and Qi
4, for i =1, ..., l

QTL. Similarly, each marker had four alleles, Mj
1, Mj

2,
Mj

3, and Mj
4, for j=1, ..., m markers. Therefore, geno-

types of the four ancestral inbreds for the ith QTL were
QQi

1, QQi
2, QQi

3, and QQi
4, and genotypes for the jth

marker were MMj
1, MMj

2, MMj
3, and MMj

4. The Kos-
ambi mapping function was used to relate map distance
and recombination frequency. Genotypes of inbreds
were simulated according to their respective parental
QTL and marker genotypes, allowing for recombination
as a function of map distance.

A soybean linkage map of 2,524 cM comprising 20
linkage groups (Song et al. 2004) was considered. An
additive genetic model with no dominance or epistasis
was considered for a quantitative trait controlled by
l=20 or 80 QTL. Markers and QTL were randomly
located in the genome. The effects of QTL followed a
geometric series. Specifically, the effect of the ith QTL
was a function of ai, where a=(l –1)/(l +1) and i=1, ...,
l QTL (Lande and Thompson 1990). Genotypic values
at each ith QTL were ai for QQi

1, 0.5(ai) for QQi
2,

�0.5(ai) for QQi
3, and �(ai) for QQi

4. Under this model,
all QTL genotypes had a mean of zero, and locus 1 had
the largest effect while locus l had the smallest effect. The
overall genotypic value of an inbred was obtained as the
sum of genotypic values across all QTL.

We considered a total of m=300 or 600 markers
distributed at random across the genome. For m=300
markers the average distance between markers was
approximately 8.3 cM, and for m=600 markers the
average distance between markers was approximately
4.2 cM.

Performance trials

The first, second, and third-cycle inbreds were evaluated
in different performance trials. The mean effect of each
performance trial was drawn from a normal distribution
with zero mean and variance scaled such that it ex-
plained 70% of the total variation (Delacy and Cooper
1990). A total of 30 different inbreds were evaluated in a
performance trial. The total number of inbreds, includ-

ing the 20 founder inbreds, was NT =N+20. The total
number of performance trials was E=NT/30. A residual
effect due to random error was added. These residuals
were drawn from a normal distribution with zero mean
and variance scaled so that the heritability on an entry-
mean basis was (as mentioned previously) H=0.40 or
0.70 during inbred development. During performance
trials heritability was adjusted from 0.40 to 0.67, and
from 0.70 to 0.88, given that the number of environ-
ments per performance trial is about three times greater
than that during inbred development (Smith et al. 1999).

Mixed model for marker effects

The data available for the mixed-model analysis con-
sisted of: i) phenotypic data for NT inbreds, ii) marker
information on m markers for each inbred, and iii)
pedigree records that described the relationships among
inbreds. We used the following mixed model:

y ¼ XbþWmþ Zuþ e;

where y = NT·1 vector of simulated phenotypic
observations of inbreds; b =E·1 vector of fixed effects
associated with performance trials plus the overall mean;
m=4m¢·1 vector of fixed effects associated with the four
alleles at each marker locus for a subset of m¢ markers; u
=NT·1 vector of additive polygenic effects not ac-
counted for by the m¢ markers; e =NT·1 vector of
residual effects; and X, W, and Z were incidence matri-
ces of ones and zeros relating y to b, m, and u, respec-
tively. The means of the random vectors u and e were
zero, and variances were Var(u) =AVA, and Var(e)
=IVR. A was the additive relationship matrix, VA was
the additive genetic variance due to polygenic effects, I
was an identity matrix, and VR was the residual variance
on an entry-mean basis. The relationship matrix A was
composed of twice the coefficient of coancestry among
inbreds. The coefficients of coancestry were calculated
based on pedigree records via the tabular method (Emik
and Terrill 1949). Marker effects were considered fixed
as proposed by Kennedy et al. (1992).

Mixed-model equations (Henderson 1984) were used
to obtain best linear unbiased estimates (BLUE) of fixed
effects b and m, and best linear unbiased predictions
(BLUP) of random effects u. The following mixed-model
equations were considered:

b̂

m̂

û

2
4

3
5 ¼

X0X X0W X0Z
W0X W0W W0Z
Z0X Z0W Z0Zþ h

2
4

3
5

X0y
W0y
Z0y

2
4

3
5

¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

2
4

3
5

X0y
W0y
Z0y

2
4

3
5

where h = A�1(VR/VA). Restricted maximum likelihood
(REML) estimates of VR and VA were obtained by
iterating on the following equations (Henderson 1984, p.
200):
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VR: =[y¢y – (solution vector)¢(right-hand side vec-
tor)] / [NT – rank(X) – rank(W)]VA: = [u¢A�1u + VR

trace(A�1C33)] / NT

Data analysis

Data analysis consisted of three steps. First, a mixed
model excluding marker information was used to obtain
REML estimates of VR and VA. These estimates were
used in a second step where the mixed-model included a
single marker, and equations were solved to obtain
BLUE values of marker effects assuming of VR and VA

were known. This process was repeated for all markers
on a single-marker basis. For each marker, an F test was
constructed to test its significance at two threshold levels
(a=0.01 or 0.0001), as described by Kennedy et al.
(1992).

Once all markers had been tested on a single-marker
basis, significant markers were selected for the third and
final step. To reduce multicollinearity of marker effects,
only the marker with the smallest P value was selected
whenever adjacent markers were significant. In the third
step, all selected markers were fitted using a multiple
marker mixed model. The final estimates of marker ef-
fects and of VR and VA were obtained from this final
step. Specifically, marker effects were expressed as the
maximum difference between marker allele effects. We
considered this criterion as meaningful to plant breeders,
who are most interested in the extremes in a given
population.

Power of mixed-model QTL mapping

We calculated the average power, false discovery rate
(FDR), and bias in each experiment. A true positive was
declared if a marker had a significant effect and had at
least one immediately adjacent QTL (Whittaker et al.
1996). Otherwise, a significant marker was declared a
false positive. False positives were considered to have an
effect of zero. Average power was equal to the number
of true positives divided by the number of QTL, aver-
aged across the number of repeats. The FDR was esti-
mated as the number of false positives divided by the
number of markers declared significant, averaged across
the number of repeats. The ratio between average power
and FDR was calculated for each experiment, and a
linear regression line through the origin was fitted to the
resulting power to FDR ratios.

For the markers declared significant, bias was esti-
mated as the percentage of deviation of an estimated
effect from the true effect of the nearest QTL, averaged
across the number of repeats. This estimator of bias was
expected to be negative because it did not account for
the recombination frequency between the significant
marker and the linked QTL. A positive value, however,
indicated an upwards bias. Specifically, the expected bias

(expressed as a proportion) was (1–2R) where R was the
recombination frequency among inbreds (Haldane and
Waddington 1931). Based on the marker density, the
maximum amount of bias purely due to recombination
between a marker and QTL was �28% when 300
markers were used and �15% when 600 markers were
used.

We defined major QTL as the top 25% of the QTL
with the largest effects (upper quartile), and minor QTL
as the bottom 25% of the QTL with the smallest effects
(lower quartile). We calculated average power and bias
for all QTL as well as for major QTL and minor QTL.

Results

The factors with the largest effects on average power to
detect QTL were the number of QTL controlling the
trait, the significance level used to detect QTL, and the
size of the population (Table 1). The average power
across experiments (i.e., averaged across experiments at
a given level of a factor) decreased from 0.20 when 20
QTL controlled the trait, to only 0.04 when 80 QTL
controlled the trait. Average power was consistently
higher when the trait was controlled by 20 QTL
regardless of the levels of other factors. When the
number of QTL increased from 20 to 80, average power
to detect major QTL decreased from 0.39 to 0.10
whereas power to detect minor QTL decreased from 0.04
to 0.01. FDR, however, remained constant at 0.22
regardless of whether 20 or 80 QTL controlled the trait.
Average bias across detected QTL decreased from 38%
when 80 QTL controlled the trait, to �6% when 20 QTL
controlled the trait. This decrease in bias was mostly due
to a decrease in bias at the minor QTL (Table 1). On
average, the effects of major QTL were overestimated
when 80 QTL controlled the trait but were underesti-
mated when 20 QTL controlled the trait. In contrast, the
effects of minor QTL were always overestimated and
amount of upward bias increased as the number of QTL
increased from 20 to 80. The amount of bias had a wide
range across experiments: average bias ranged from
�547 to 784% (results not shown) with a mean across
experiments of 16%.

A less stringent significance level led to higher power
(Table 1). Across experiments, a decrease in the signifi-
cance threshold level from a=0.01 to 0.0001 reduced
average power from 0.17 to 0.07. Most of this reduction
in power was due to a loss in the power to detect minor
QTL (Table 1). In contrast, a more stringent significance
level of a=0.0001 reduced FDR from 0.32 to 0.11 across
experiments. Bias increased from 13 to 20% when the
significance level decreased from a=0.01 to 0.001. This
increase was mostly due to an increase in bias at the
minor QTL (Table 1).

Larger population sizes led to higher power (Ta-
ble 1). Across experiments, when population size in-
creased from N=600 to 1,200 inbreds, average power
increased two-fold, while FDR decreased from 0.24 to
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0.20. A larger population size of 1,200 resulted in a
reduction in average bias from 25 to 8%. Bias at the
major QTL decreased from 1 to �25% when the
population size increased from 600 to 1,200 inbreds.

The number of markers, the heritability of the trait,
and the amount of initial linkage disequilibrium had
only minor effects on the power to detect QTL. Across
experiments, average power increased from 0.10 to
0.15 when the number of markers increased from 300
to 600. This increase was largely due to an increase in
power (from 0.20 to 0.30) to detect major QTL. FDR
increased only slightly, from 0.20 to 0.24 across
experiments, when 600 markers were used. The gain in
power outweighed the loss in FDR. Average bias de-
creased only slightly, from 18 to 15%, when the
number of marker increased from 300 to 600. Most of
this change in average bias was at the minor QTL.

When heritability increased from 0.40 to 0.70, aver-
age power across experiments increased from 0.11 to
0.14. The corresponding FDR increased from 0.21 to
0.23. Average bias decreased from 28 to 4%, with this
decrease being mostly due to reduced bias at the minor
QTL. Bias at major QTL changed from slight overesti-
mation (0.3%) to underestimation of (�25%).

Among all the factors studied, the amount of initial
linkage disequilibrium had the smallest effect on average
power. Linkage disequilibrium decreased from 0.66–0.78
after 10 generations of random mating, to 0.57–0.69
after 20 generations of random mating. Across experi-
ments, this decay in linkage disequilibrium decreased
power from 0.13 to 0.12 and increased FDR from 0.22
to 0.23. However, average bias decreased from 26 to 6%.
This change mostly occurred at the major QTL.

Discussion

Both precision and accuracy are important in QTL
mapping. Power and FDR were functions of the preci-
sion in QTL mapping in this study, whereas bias mea-
sured the accuracy in QTL mapping. Power to detect
QTL and FDR were affected by the genetic architecture
of the trait and resources available for mixed-model
QTL mapping. Power was maximized when the trait was
controlled by fewer QTL and a large population was
used for detecting QTL. These results agreed with those
reported for designed mapping populations (van Ooijen
1992; Beavis 1994; Bernardo 2004). Beavis (1994) found
that power decreased from 0.67 to 0.29 when the number
of QTL in an F2 population increased from 10 to 40.
van Ooijen (1992) found that increasing the size of an F2

population from 200 to 400 individuals led to an almost
two-fold increase in the probability of detecting a single
QTL. Beavis (1994) found that increasing the population
size from 500 to 1,000 individuals increased power to
detect QTL by 60% on average. However, the increase
in power due to larger population size varied from 6 to
127%, depending on number of QTL and heritability of
the trait.

A stringent significance level of a=0.0001 instead of
0.01 led to fewer QTL declared significant, but also to
fewer QTL being falsely declared significant. This result
was consistent with previous results for an F2 mapping
population (Bernardo 2004). Our results showed that
although fewer QTL would be reported at high levels of
significance, these significant markers have a much
higher probability of being truly linked to a QTL.
Having fewer declared QTL with high confidence is
crucial in gene discovery. Therefore, minimizing false
leads through the use of stringent significant levels is
recommended. Given that power was higher for major
QTL than for minor QTL, the QTL detected under
stringent significance levels are likely to be major QTLs
regardless of the magnitude of their estimated effects.

In this study, the number of markers had only a
minor effect on the power to detect QTL. This result was
likely due to the marker density already being high when
300 markers were used. The average distance between
markers was about 8.3 cM when 300 markers were used
and 4.2 cM when 600 markers were used. Our results
agreed with those of Darvasi et al. (1993), who reported
little gain in power for marker distances less than 10 cM.
Similarly, heritability also had a minor effect on power
and FDR. Estimation of marker effects by the mixed-
model approach utilizes information from relatives. The
use of information from relatives leads to better esti-
mates of genotypic values, which in effect causes heri-
tability to be higher. We infer that exploiting
information from relatives made heritability sufficiently
high regardless of the simulated base values of 0.40 and
0.70.

Bias of effect estimates was affected by genetic
architecture of the trait as well as resources available.
Beavis (1998) found that the phenotypic variance asso-
ciated with a correctly identified QTL became overesti-
mated as the population size decreased. In addition, the
effects of minor QTL were greatly overestimated when
the population size was small. Our results showed a
similar trend; a small population size resulted in a large
bias, and the effects of major QTL were generally
underestimated while the effects of minor QTL were
generally overestimated (Table 1). These results agree
with those of Kennedy et al. (1992), who found that bias
tended to be proportionately larger for QTL with small
effect than for QTL with large effect. Furthermore, the
underestimation of effects at major QTL could have
been partly due to the failure of the bias estimator to
account for recombination between a significant marker
and a linked QTL. Overall, our results imply that al-
though it would be difficult to predict whether an effect
is over- or underestimated in a particular experiment,
any bias is reduced as more resources become available
for mapping. This gain in accuracy is further leveraged
by an increase in power and a reduction in FDR.

In a previous study (Yu et al. 2005), we examined the
power of mixed-model QTL mapping via a mixed model
in hybrid crops under similar experimental conditions. A
comparison of our results in the present study with those
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Table 1 Average power, false discovery rate (FDR), and average bias for mixed-model QTL mapping in a self-pollinated crop

a Linkage
disequilibriuma

Number
of QTL

Number
of markers

H Population
size

Power FDR Bias (%)c

All
QTL

Major
QTLb

Minor
QTL

All
QTL

Major
QTL

Minor
QTL

0.01 High 20 300 0.40 600 0.17 0.40 0.02 0.39 42 �30 257
1,200 0.29 0.53 0.08 0.29 16 �50 135

0.70 600 0.19 0.37 0.06 0.36 �75 �47 �6
1,200 0.33 0.51 0.12 0.30 �32 �64 13

600 0.40 600 0.19 0.47 0.02 0.38 �22 �32 �81
1,200 0.38 0.75 0.08 0.29 �1 �35 73

0.70 600 0.25 0.54 0.05 0.35 �18 �37 15
1,200 0.47 0.76 0.12 0.29 �20 �54 50

80 300 0.40 600 0.05 0.10 0.03 0.30 53 52 17
1,200 0.10 0.19 0.04 0.20 83 �1 240

0.70 600 0.05 0.11 0.03 0.30 67 �13 353
1,200 0.12 0.22 0.05 0.20 49 �25 144

600 0.40 600 0.05 0.12 0.02 0.38 103 �1 168
1,200 0.11 0.21 0.04 0.30 62 �1 114

0.70 600 0.06 0.11 0.02 0.41 131 �16 412
1,200 0.15 0.31 0.05 0.24 29 �20 184

Low 20 300 0.40 600 0.15 0.34 0.03 0.38 �27 �35 103
1,200 0.23 0.36 0.06 0.36 �35 �54 8

0.70 600 0.20 0.32 0.10 0.35 �17 �45 64
1,200 0.28 0.42 0.10 0.33 �39 �67 16

600 0.40 600 0.20 0.44 0.02 0.36 36 �33 247
1,200 0.36 0.65 0.02 0.34 �7 �37 73

0.70 600 0.23 0.45 0.04 0.33 �20 �50 51
1,200 0.42 0.69 0.07 0.31 �29 �49 24

80 300 0.40 600 0.03 0.07 0.02 0.39 134 �9 346
1,200 0.08 0.18 0.02 0.26 19 �14 47

0.70 600 0.04 0.08 0.01 0.32 27 1 164
1,200 0.09 0.17 0.02 0.26 �14 �33 �116

600 0.40 600 0.04 0.10 0.02 0.40 37 8 130
1,200 0.11 0.28 0.01 0.32 18 �17 97

0.70 600 0.05 0.11 0.02 0.43 �136 �20 260
1,200 0.12 0.27 0.02 0.30 �4 �32 25

0.001 High 20 300 0.40 600 0.06 0.19 0.00 0.09 23 �6 564
1,200 0.14 0.32 0.02 0.07 33 �38 169

0.70 600 0.07 0.16 0.01 0.19 �2 �35 94
1,200 0.16 0.32 0.04 0.11 �21 �52 27

600 0.40 600 0.08 0.23 0.00 0.07 �43 �18 �112
1,200 0.21 0.58 0.00 0.09 �5 �30

0.70 600 0.10 0.23 0.01 0.14 �7 �21 �111
1,200 0.31 0.59 0.03 0.06 �31 �47 �59

80 300 0.40 600 0.01 0.02 0.00 0.04 57 87 838
1,200 0.03 0.06 0.00 0.04 44 35 63

0.70 600 0.01 0.02 0.00 0.08 22 10 257
1,200 0.03 0.08 0.01 0.11 29 �18 202

600 0.40 600 0.01 0.02 0.00 0.20 91 143 �328
1,200 0.03 0.09 0.01 0.21 45 5 392

0.70 600 0.01 0.03 0.00 0.17 95 74 538
1,200 0.05 0.11 0.01 0.13 38 �2 396

Low 20 300 0.40 600 0.05 0.16 0.01 0.05 20 �8 412
1,200 0.10 0.20 0.03 0.09 �12 �42 84

0.70 600 0.07 0.15 0.02 0.10 129 �32 903
1,200 0.14 0.24 0.03 0.08 �41 �55 �71

600 0.40 600 0.07 0.20 0.00 0.16 14 �29 298
1,200 0.21 0.49 0.02 0.04 �11 �31 52

0.70 600 0.10 0.22 0.01 0.15 �4 �30 94
1,200 0.24 0.52 0.03 0.10 7 �39 201

80 300 0.40 600 0.00 0.01 0.00 0.07 24 93 719
1,200 0.02 0.05 0.00 0.02 20 13 383

0.70 600 0.01 0.02 0.00 0.15 4 7
1,200 0.02 0.06 0.01 0.15 �8 �15 �117

600 0.40 600 0.01 0.03 0.00 0.12 44 51 710
1,200 0.03 0.08 0.01 0.12 48 76 438

0.70 600 0.01 0.02 0.00 0.21 10 55 �102
1,200 0.03 0.07 0.01 0.26 17 �25 231

aHigh linkage disequilibrium was achieved by 10 generations of random mating; low linkage disequilibrium was achieved by 20 generations of
random mating
bMajor QTL were the top 25% of QTL with the largest effects; minor QTL were the bottom 25% of QTL with the smallest effects
cPercentage deviation of the estimated marker effect from the true QTL effect
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of Yu et al. (2005) indicated that average power was
higher for hybrid crops than for self-pollinated crops
(Fig. 1). In hybrid crops, average power to detect QTL
ranged from 0.11 to 0.59 for a significance level of
a=0.01, and from 0.01 to 0.47 for a=0.0001 (Yu et al.
2005). The FDR ranged from 0.22 to 0.74 for a=0.01,
and from 0.05 to 0.46 for a=0.0001. In the present
study, we found for self-pollinated crops that the aver-
age power ranged from 0.03 to 0.47 for a=0.01, and
from 0.01 to 0.31 for a=0.0001 (Table 1, Fig. 1). The
FDR ranged from 0.20 to 0.43 for a=0.01, and from
0.03 to 0.33 for a=0.0001. The average ratio of power to
FDR was 0.75 for hybrid crops and 0.51 for self-polli-
nated crops (Fig. 1). These comparisons suggested that,
in addition to higher power of mixed-model QTL
mapping in hybrid crops than in self-pollinated crops,
the FDR at a given level of power is lower in hybrid
crops than in self-pollinated crops. In both cases, how-
ever, the power to FDR ratios were lower than 1. This
result should be interpreted with caution for two rea-
sons. First, average power was roughly twice as high
among the major QTL than among all the QTL. The
power to FDR ratios would therefore increase when
only the major QTL, which have the largest effects and
would be the prime targets for gene discovery, are con-
sidered. Second, the low power to FDR ratios could be
partially explained by the very strict criteria we used for
defining power and FDR. Suppose M1, M2, and M3 are
closely adjacent markers, and a QTL is found between
M2 and M3. Further suppose that only M1 is found
significant, perhaps due to other QTL in the vicinity. In
this situation, power was declared equal to zero whereas
the FDR was declared equal to 1 even though M1 could
have been only a few centimorgan away from the QTL.

The reasons are unclear for the higher power to FDR
ratio in hybrid crops than in self-pollinated crops.
Similar population sizes (N=600), numbers of QTL

controlling the trait, significance levels for detecting
QTL, heritabilities, and marker densities were used in
the current study and by Yu et al. (2005). In this study
we considered four alleles per locus (QTL or marker) in
contrast to two alleles per locus considered by Yu et al.
(2005). It seems unlikely this difference in the number of
alleles per locus would explain the difference in power
between the two studies. Xu and Atchley (1995) used a
mixed model with random marker effects and reported
little change in power to detect QTL when the number of
QTL alleles increased from two to six. A possible reason,
however, is that the estimation of marker effects among
hybrids capitalizes on information from relatives from
the two pedigrees corresponding to the two parental
inbreds of a hybrid. In contrast, the estimation of mar-
ker effects among inbreds exploits only one pedigree. We
speculate that this higher degree of interconnectedness in
hybrid crops led to a better estimation of marker effects
and prediction of genotypic effects and, consequently,
higher power of QTL detection.

How much power is enough power? The answer
probably depends on whether the objective is gene dis-
covery or marker-assisted selection. The precision and
accuracy of the analysis for gene discovery would re-
quire larger populations and availability of markers to
pinpoint specific candidate loci. In this context, mini-
mizing FDR would be more critical than maximizing
power. In contrast, marker-assisted selection requires
that the phenotype can be predicted from the marker
profile of an individual. Therefore, markers need not
need to be as close as possible to the underlying QTL but
rather be as highly associated with the trait of interest as
possible.

In this study and in those of Parisseaux and Bernardo
(2004), Yu et al. (2005), and M. Arbelbide and R. Ber-
nardo (2005), mixed-model QTL mapping via a mixed
model was applied considering markers as fixed effects.
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Fig. 1 Average power versus
false discovery rate for self-
pollinated and hybrid crops.
Information on power and FDR
for hybrid crops was obtained
from Yu et al. (2005). On
average, the power to FDR ratio
was 0.75 for hybrids and 0.51 for
inbreds
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In contrast, Crepieux et al. (2004), Crepieux et al. (2005),
and Zhang et al. (2005) proposed similar methods but
considered markers as random effects and adapted the
two-step variance component method of George et al.
(2000) to inbred lines in complex pedigrees. Considering
marker information as random effects allows the iden-
tification of marker intervals with putative QTLs and
allows the prediction of overall breeding values for in-
breds based on putative QTL alleles. Although this
information can be used for selection, it does not pro-
vide estimates of mean effects associated with specific
marker alleles linked to QTLs, preventing direct identi-
fication of favorable alleles.

In contrast, a fixed-effect approach allows the esti-
mation of an effect for each marker allele. This approach
inherently identifies the favorable marker alleles and the
inbreds that most likely carry favorable alleles at specific
QTL. As genetic maps become more dense, differences
become negligible between interval mapping versus
estimating the mean effect of a marker allele (Rebaı̈ et al.
1995). If the markers are not candidate genes, then the
fixed-effects approach is a first step towards gene dis-
covery. If the marker loci are candidate genes themselves
(e.g. single nucleotide polymorphisms or haplotypes
within coding regions) or functional sequences, the
analysis provides direct information on the genes or
regulatory elements affecting the trait. In either case
marker-assisted selection can still be practiced.

A possible drawback, however, of considering marker
effects as fixed instead of random is overparameteriza-
tion in the model (Crepieux et al. 2005). Overparame-
terization occurs in a system of equations when the
number of unknowns (i.e., marker effects to be esti-
mated) exceeds the number of equations. In our study
overparameterization was avoided by three procedures.
First, single-marker analysis was conducted prior to
multiple-marker analysis. Considering a marker at a
time allowed the preliminary identification of putative
marker-QTL associations. Second, only the marker with
the smallest P value was selected whenever adjacent
markers were significant in the single-marker analysis.
Third, marker effects within a locus were expressed as
orthogonal contrasts among alleles.

In summary, our results indicate that QTL mapping
via a mixed model approach is useful for gene discovery
in the context of a breeding program for a self-pollinated
crop. The method is most useful when few QTL control
the trait and a large population is used to detect the QTL.
In a companion study (Arbelbide and Bernardo 2006), we
validated this mixed-model QTL mapping methodology
by detecting previously reported QTL and known can-
didate genes for kernel hardness and dough strength in a
bread wheat (Triticum aestivum L.) breeding program.
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